Scenario generation for deliberation with structured arguments

Eric M. Kok John-Jules Ch. Meyer Herre van Oostendorp Henry Prakken Gerard A. W. Vreeswijk

Utrecht University

November 11, 2011

Introduction

Argumentation and agents The use of argumentation

Formal model

Deliberation framework Rule chaining Knowledge assignment

Evaluation of scenarios

Metrics Experiments

Conclusions

Argumentation in multi-agent systems

- Argumentation in the reasoning process
- Argumentation in dialogues
 - Persuasion, negotiation, deliberation, ...

Introduction

Argumentation and agents The use of argumentation

Formal model

Deliberation framework Rule chaining Knowledge assignment

Evaluation of scenarios

Metrics Experiments

Argumentation in multi-agent systems

- Argumentation in the reasoning process
- Argumentation in dialogues
 - Persuasion, negotiation, deliberation, ...

Introduction

Argumentation and agents The use of argumentation

Formal model

Deliberation framework Rule chaining Knowledge assignment

Evaluation of scenarios

Metrics Experiments

• a_1 : We should go to the local pizzeria.

Introduction

Argumentation and agents The use of argumentation

Formal model

Deliberation framework Rule chaining Knowledge assignment

Evaluation of scenarios

Approacn Metrics Experiments

Conclusions

- a_1 : We should go to the local pizzeria.
- ► a₂: Why should we go there? I propose we go to the nearby bistro instead.

Introduction

Argumentation and agents The use of argumentation

Formal model

Deliberation framework Rule chaining Knowledge assignment

Evaluation of scenarios

Approacn Metrics Experiments

Conclusions

- a_1 : We should go to the local pizzeria.
- ► a₂: Why should we go there? I propose we go to the nearby bistro instead.
- ► a₁: Well, the pizzeria serves tasty pizza's. Why should we go to the bistro?

Introduction

Argumentation and agents The use of argumentation

Formal model

Deliberation framework Rule chaining Knowledge assignment

Evaluation of scenarios Approach

Metrics Experiments

Conclusions

- a_1 : We should go to the local pizzeria.
- ► a₂: Why should we go there? I propose we go to the nearby bistro instead.
- ► a₁: Well, the pizzeria serves tasty pizza's. Why should we go to the bistro?
- ► a₂: The toppings at the pizzeria are very dull, while the bistro has the best steaks in town.

Introduction

Argumentation and agents The use of argumentation

Formal model

Deliberation framework Rule chaining Knowledge assignment

Evaluation of scenarios

Metrics Experiments

- a_1 : We should go to the local pizzeria.
- ► a₂: Why should we go there? I propose we go to the nearby bistro instead.
- ► a₁: Well, the pizzeria serves tasty pizza's. Why should we go to the bistro?
- ► a₂: The toppings at the pizzeria are very dull, while the bistro has the best steaks in town.

Introduction

Argumentation and agents The use of argumentation

Formal model

Deliberation framework Rule chaining Knowledge assignment

Evaluation of scenarios

Metrics Experiments

Conclusions

<u>►</u> ...

Deliberation characteristics

- Mutual deliberation goal
- Unequal roles between agents
- Not all options are known by all agents
- Compatible and conflicting agent goals
- Incomplete information and from different sources

Introduction

Argumentation and agents The use of argumentation

Formal model

Deliberation framework Rule chaining Knowledge assignment

Evaluation of scenarios

Approach Metrics Experiments

Why use argumentation?

- Argumentation makes dialogues...
 - more efficient
 - more effective

Introduction

Argumentation and agents The use of

argumentation

Deliberation framework Rule chaining Knowledge assignment

Evaluation of scenarios

Approacn Metrics Experiments

Why use argumentation?

- Argumentation makes dialogues...
 - more efficient
 - more effective
- But these claims still need validation through
 - Formal analysis
 - Experimentation

Argumentation and agents The use of

argumentation

Formal model

Deliberation framework Rule chaining Knowledge assignment

Evaluation of scenarios

Approach Metrics Experiments

Experimentation in dialogues

- 1. Generate a scenario
- 2. Let the agents deliberate
- 3. Determine the dialogue outcome
- 4. Measure the dialogue efficiency and effectiveness

Introduction

Argumentation and agents The use of

argumentation

Formal model

Deliberation framework Rule chaining Knowledge assignment

Evaluation of scenarios

Approach Metrics Experiments

Experimentation in dialogues

1. Generate a scenario

- 2. Let the agents deliberate
- 3. Determine the dialogue outcome
- 4. Measure the dialogue efficiency and effectiveness

Introduction

Argumentation and agents The use of

argumentation

Formal model

Deliberation framework Rule chaining Knowledge assignment

Evaluation of scenarios

Approach Metrics Experiments

Deliberation system

- An ASPIC argumentation system $\mathcal L$
- A topic language L_t consisting of
 - options L_o
 - goals L_g
 - beliefs L_b
- A mutual deliberation goal $g_d \in L_g$

Introduction

Argumentation and agents The use of argumentation

Formal model

Deliberation framework

Rule chaining Knowledge assignment

Evaluation of scenarios

Approach Metrics Experiments

Communication language

Table: The available speech acts in deliberation dialogue

speech act	attacks	surrenders
propose(o)	why-propose(o)	
why-propose(o)	$argue(A \vdash p)$	
	where $o \in A$	
$argue(A \vdash p)$	$argue(B \vdash p')$ where $B \vdash p'$ defeats $A \vdash p$	concede(p)
	why(p') where $p' \in A$	concede(p')
why(p)	$argue(A \vdash p)$	retract(p)
concede(p)		
retract(p)		

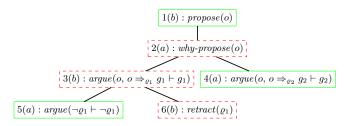
Introduction

Argumentation and agents The use of argumentation

Formal model

Deliberation framework

Knowledge assignment


Evaluation of scenarios

Approach Metrics Experiments

Example dialogue

 $\mathcal{A} = \{\textit{a}_1,\textit{a}_2,\textit{a}_3\}$ with dialogue goal \textit{g}_d

Introduction

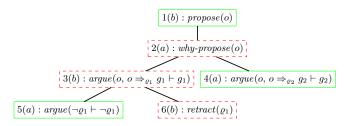
Argumentation and agents The use of argumentation

Formal model

Deliberation framework

Rule chaining Knowledge assignment

Evaluation of scenarios


Approach Metrics Experiments

Conclusions

Example dialogue

 $\mathcal{A} = \{\textit{a}_1,\textit{a}_2,\textit{a}_3\}$ with dialogue goal \textit{g}_d

Introduction

Argumentation and agents The use of argumentation

Formal model

Deliberation framework

Rule chaining Knowledge assignment

Evaluation of scenarios

Approach Metrics Experiments

Conclusions

Agents and roles

- $\blacktriangleright \ \ \mathsf{A} \ \mathsf{set} \ \mathsf{of} \ \mathsf{roles} \ \mathcal{R}$
 - A set of options $O_r = \{o_1, \ldots, o_i\}$ such that $|O_r| = n_{O_r}$
 - A set of goals $G_r = \{g_1, \ldots, g_j\}$ such that $|G_r| = n_{G_r}$
- Every agent $a \in \mathcal{A}$
- A knowledge pool *K* is assigned:
 - a set of pool options $O_K = \bigcup_{r \in \mathcal{R}} O_r$
 - a set of pool goals $G_K = \bigcup_{r \in \mathcal{R}} G_r$

Introduction

Argumentation and agents The use of argumentation

Formal model

Deliberation framework

Rule chaining Knowledge assignment

Evaluation of scenarios

Approach Metrics Experiments

Rule chains

Idea: reasoning chains from a goal g to an option o

Introduction

Argumentation and agents The use of argumentation

Formal model

Deliberation framework

Rule chaining

assignment

Evaluation of scenarios

Approach Metrics Experiment

Conclusions

Rule chains

- Idea: reasoning chains from a goal g to an option o
- Example chain

$$C_{g_d,o_1} = \{o_1 \Rightarrow_{\varrho_1} p_5, \ p_5 \Rightarrow_{\varrho_2} p_2, \ p_2 \Rightarrow_{\varrho_3} g_d\}$$

Introduction

Argumentation and agents The use of argumentation

Formal model

Deliberation framework

Rule chaining

Knowledge assignment

Evaluation of scenarios

Approach Metrics Experiment

Rule chains

- Idea: reasoning chains from a goal g to an option o
- ► Example chain $C_{g_d,o_1} = \{o_1 \Rightarrow_{\varrho_1} p_5, p_5 \Rightarrow_{\varrho_2} p_2, p_2 \Rightarrow_{\varrho_3} g_d\}$
- given I = 3 and $\{p_5, p_2\} \subseteq S$

Introduction

Argumentation and agents The use of argumentation

Formal model

Deliberation framework

Rule chaining

Knowledge assignment

Evaluation of scenarios

Approach Metrics Experiment

Conflict generation

- Every rule chain $C_{g,o}$ has a set of conflicts $\overline{C}_{g,o}$
- containing for every rule $p \Rightarrow_{\varrho} q \in C_{g,o}$:
 - a fact $\neg \varrho$ (an undercutter)
 - a fact $\neg p$ (an underminer)
 - a fact $\neg q$ (a rebuttal)

Introduction

Argumentation and agents The use of argumentation

Formal model

Deliberation framework

Rule chaining

assignment

Evaluation of scenarios

Approach Metrics Experiment

Conflict generation

- Every rule chain $C_{g,o}$ has a set of conflicts $\overline{C}_{g,o}$
- containing for every rule $p \Rightarrow_{\varrho} q \in C_{g,o}$:
 - a fact ¬*p* (an undercutter)
 - a fact $\neg p$ (an underminer)
 - a fact $\neg q$ (a rebuttal)
- Consider again example chain

 $C_{g_d,o_1} = \{o_1 \Rightarrow_{\varrho_1} p_5, \ p_5 \Rightarrow_{\varrho_2} p_2, \ p_2 \Rightarrow_{\varrho_3} g_d\}$

• Has conflicts
$$\overline{C}_{g_d,o_1} = \{\neg \varrho_1, \neg o_1, \neg p_5, \neg \varrho_2, \neg p_2, \neg \varrho_3\}.$$

Introduction

Argumentation and agents The use of argumentation

Formal model

Deliberation framework

Rule chaining

Knowledge assignment

Evaluation of scenarios Approach

Metrics Experiments

Assign beliefs to a role r depending on the role's options

Introduction

Argumentation and agents The use of argumentation

Formal model

Deliberation framework Rule chaining

Knowledge assignment

Evaluation of scenarios

Metrics Experiments

Conclusions

Role beliefs

- Assign beliefs to a role r depending on the role's options
- For every option o ∈ O_K a set of role-option beliefs B^o_r is any set such that:
 - if $o \in O_r$ then $B_r^o = \underline{C}_{g,o}$ for some goal $g \in G_r$
 - if $o \notin O_r$ then $B_r^o \subseteq \overline{C}_{g,o}$ for an arbitrary goal $g \in G_r$ such that $|B_r^o| = n_{B_r^o}$

Introduction

Argumentation and agents The use of argumentation

Formal model

Deliberation framework Rule chaining Knowledge assignment

Evaluation of scenarios Approach Metrics Experiments

Option and goal allocation

- An agent $a \in \mathcal{A}$ with role r has:
 - A set of options $O_a = O_r$

Introduction

Argumentation and agents The use of argumentation

Formal model

Deliberation framework Rule chaining

Knowledge assignment

Evaluation of scenarios

Approach Metrics Experiments

Option and goal allocation

- An agent $a \in \mathcal{A}$ with role r has:
 - A set of options $O_a = O_r$
 - A set of *non-role originating goals* $G_a^{\overline{r}}$ where for every $g \in G_a^{\overline{r}}$ it holds that $g \in G_K \setminus G_r$ and such that $|G_a^{\overline{r}}| = n_{G_a^{\overline{r}}}$
 - The combined set of goals $G_a = G_r \cup G_a^{\bar{r}}$

Introduction

Argumentation and agents The use of argumentation

Formal model

Deliberation framework Rule chaining

Knowledge assignment

Evaluation of scenarios

Metrics Experiments

Belief allocation

An agent a ∈ A with some role r is assigned a set of role-originating beliefs

$$B^r_a \subseteq igcup_{o\in O_K} B^o_r$$
 such that $|B^r_a| = n_{B^r_a}$

and a set of non-role originating beliefs

$$B^{ar{r}}_{a}\subseteq igcup_{o\in O_{a}} C_{g,o}$$
 for an arbitrary goal $g\in G_{a}$

• such that $|B_a^r| = n_{B_a^r}$

3

・ロト ・部ト ・ヨト ・ヨト

assignment

Argumentation and

argumentation

Evaluation of scenarios

Knowledge

Approach Metrics Experiments

Conclusions

Universiteit Utrecht

17

Testing scenarios for interestingness

 Scenarios contain expressivity and cover the deliberation problem dynamics

Introduction

Argumentation and agents The use of argumentation

Formal model

Deliberation framework Rule chaining Knowledge assignment

Evaluation of scenarios

Approach Metrics Experiments

Conclusions

Testing scenarios for interestingness

- Scenarios contain expressivity and cover the deliberation problem dynamics
- Do they cater interesting dialogues?
- Test whether it allows arguments for/against agent's options

Introduction

Argumentation and agents The use of argumentation

Formal model

Deliberation framework Rule chaining Knowledge assignment

Evaluation of scenarios

Approach Metrics Experiments

Parameters to the scenario generation process

	min	example	max
The number of agents	1	3	6
The number of roles	1	2	6
A role r's options set size	2	2	5
A role r's goals set size	2	2	5
The chaining seedset size	10	10	100
The length of rule chains	3	3	9
An agent a's negated role-option beliefs set size	0	3	15
An agent a's non-role originating goals set size	0	1	2
An agent a's role-originating beliefs set size	1	7	15
An agent a's non-role originating beliefs set size	0	2	20
	The number of roles A role r's options set size A role r's goals set size The chaining seedset size The length of rule chains An agent a's negated role-option beliefs set size An agent a's non-role originating goals set size An agent a's role-originating beliefs set size	The number of agents 1 The number of roles 1 A role r's options set size 2 A role r's goals set size 2 The chaining seedset size 10 The length of rule chains 3 An agent a's negated role-option beliefs set size 0 An agent a's non-role originating goals set size 1 An agent a's role-originating beliefs set size 1	The number of agents13The number of roles12A role r's options set size22A role r's goals set size22The chaining seedset size1010The length of rule chains33An agent a's negated role-option beliefs set size03An agent a's non-role originating goals set size01An agent a's role-originating beliefs set size17

Introduction

Argumentation and agents The use of argumentation

Formal model

Deliberation framework Rule chaining Knowledge assignment

Evaluation of scenarios

Approach Metrics Experiments

Conclusions

Option justification

- An agent a's option o ∈ O_a is a justified option if, on the basis of the beliefs B_a ∪ {o}, an argument A |~ g can be constructed for some goal g ∈ G_a such that o ∈ A.
- ► A generated scenario with a set of agents A has an option justification percentage

$$j_{\mathcal{A}} = \frac{|\bigcup_{a \in \mathcal{A}} \{o | o \in O_a \text{ where } o \text{ is a justified option}\}|}{n_{\mathcal{A}} \times n_{O}} \times 100$$

Introduction

Argumentation and agents The use of argumentation

Formal model

Deliberation framework Rule chaining Knowledge assignment

Evaluation of scenarios Approach Metrics

Experiments

Countered option justification

- An agent a's justified option o, as supported by argument A |∼ g, is also a countered justified option if some agent a' ∈ A, where a ≠ a', can, on the basis of beliefs B_{a'} ∪ {o}, construct a counter-argument B |∼ p that defeats A |∼ g.
- ► A generated scenario with a set of agents A has an option countered justification percentage

 $\bar{j}_{\mathcal{A}} = \frac{\left|\bigcup_{a \in \mathcal{A}} \{o | o \in O_a \text{ where } o \text{ is a countered justified option}\right|^{\text{Metrics}}}{\left|\bigcup_{a \in \mathcal{A}} \{o | o \in O_a \text{ where } o \text{ is a justified option}\right|}$

Experimental setup

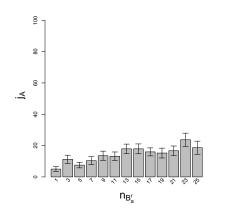
- Generate and play scenarios repeatedly
- 1000 runs with random parameter settings
- Apply metrics...

Introduction

Argumentation and agents The use of argumentation

Formal model

Deliberation framework Rule chaining Knowledge assignment


Evaluation of scenarios Approach

Experiments

Option justification

Average option justification percentage (with standard errors of the mean) with $n_{B'_a} \in \{1,\ldots,25\}$

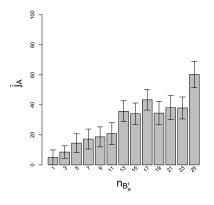
Introduction

Argumentation and agents The use of argumentation

Formal model

Deliberation framework Rule chaining Knowledge assignment

Evaluation of scenarios Approach


Experiments

Conclusions

Countered option justification

Average countered option justification percentage (with standard errors of the mean) with $n_{B_a^r} \in \{1, \dots, 25\}$

Introduction

Argumentation and agents The use of argumentation

Formal model

Deliberation framework Rule chaining Knowledge assignment

Evaluation of scenarios Approach

Metrics Experiments

Conclusions

Most influential parameters?

Multiple linear regression analysis

Table: Input parameters and their influence on j_A and \overline{j}_A

	option justification $j_{\mathcal{A}}$				countered option justification $\overline{j}_{\mathcal{A}}$			
	β	t	P	ideal	β	t	P	ideal
1	-0.49	-18.95	< 0.001	3	0.15	-3.56	< 0.001	5
n _{Br}	0.25	9.73	< 0.001	8	0.03	0.78	NS	10
n _B r	0.24	9.57	< 0.001	21	0.37	8.48	< 0.001	23
n _O r	-0.19	-7.51	< 0.001	3	-0.16	-4.01	< 0.001	2
n _B o	-0.15	-5.74	< 0.001	5	0.194	4.59	< 0.001	13
n_R	-0.07	-2.67	< 0.01	3	0.117	2.86	< 0.01	5
ns	-0.06	-2.37	< 0.05	20	-0.15	-3.55	< 0.001	40
n_A	0.02	0.61	NS	6	0.39	9.66	< 0.001	6
n _{Gr}	0.01	-2.67	NS	3	-0.10	-2.52	< 0.05	6
$n_{G_a^{\overline{r}}}$	0.01	0.22	NS	2	0.14	0.37	NS	2

Introduction

Argumentation and agents The use of argumentation

Formal model

Deliberation framework Rule chaining Knowledge assignment

Evaluation of scenarios Approach

Experiments

Experimental results

- Out of the 10 input parameters 7 have a statistically significant influence on j_A
- ► Out of the 10 input parameters 8 have a statistically significant influence on *j*_A
- When j_A is important: vary I
- When $\overline{j}_{\mathcal{A}}$ is important: vary $n_{\mathcal{A}}$
- $n_{B_a^r}$ has a big influence on both

Introduction

Argumentation and agents The use of argumentation

Formal model

Deliberation framework Rule chaining Knowledge assignment

Evaluation of scenarios Approach Metrics

Experiments

Most interesting dialogues

- Maximize j_A and \overline{j}_A
- Lineair model predicts: get the maximal outcome

Introduction

Argumentation and agents The use of argumentation

Formal model

Deliberation framework Rule chaining Knowledge assignment

Evaluation of scenarios Approach

Metrics Experiments

Most interesting dialogues

- Maximize j_A and \overline{j}_A
- Lineair model predicts: get the maximal outcome
- Produces $j_A = 53\%$ and $\overline{j}_A = 99\%$

Introduction

Argumentation and agents The use of argumentation

Formal model

Deliberation framework Rule chaining Knowledge assignment

Evaluation of scenarios Approach

Metrics Experiments

- A methodology for experimental research with argumentation in MAS
- Identify the most interesting parameter settings
- Identify which parameters to vary

Introduction

Argumentation and agents The use of argumentation

Formal model

Deliberation framework Rule chaining Knowledge assignment

Evaluation of scenarios

Metrics Experiments

- Larger project to show use of argumentation in MAS
- Strategies...
- More expresive logics and frameworks...

Introduction

Argumentation and agents The use of argumentation

Formal model

Deliberation framework Rule chaining Knowledge assignment

Evaluation of scenarios

Approacn Metrics Experiments

