
Testing the benefits of structured argumentation in
multi-agent deliberation dialogues

Eric M. Kok, John-Jules Ch. Meyer, Henry Prakken, and
Gerard A. W. Vreeswijk

Department of Information and Computing Sciences,
Utrecht University,
The Netherlands

Abstract. Work on argumentation-based dialogue systems often assumes that
the adoption of argumentation leads to improved dialogue efficiency and effec-
tiveness. Several studies have taken an experimental approach to prove these al-
leged benefits, but none has yet supported the expressiveness of a structured argu-
mentation logic. This paper shows how the use of argumentation in deliberation
style dialogues can be tested while supporting goal-based agents that use the AS-
PIC framework for structured argumentation. It is experimentally shown that em-
ploying an arguing strategy increases the effectiveness over a non-argumentative
strategy.

Category I.2.11 [Artificial Intelligence] Distributed Artificial Intelligence—
Languages and structures, multi-agent systems

General Terms Design, Experimentation
Keywords Argumentation, Multi-agent dialogues, Experimental evaluation, Strategies

1 Introduction

To improve communication and shared decision making in multi-agent systems it is
often proposed to allow for argumentation in inter-agent dialogues. The idea is that, by
providing arguments and giving counter-arguments, the effectiveness, in terms of the
desirability of the dialogue result, as well as the efficiency, as the number of exchanged
messages, will improve. These benefits are supposed to originate in the motivation that
agents can give in their discourse. Instead of plain assertions and requesting informa-
tion, agents can actually give a motivation, revealing their goals and thereby contribut-
ing to the general understanding. This increased understanding should result in a faster
process and more considerate decision, raising the dialogue efficiency and effectiveness.

Throughout the years many argumentation-based dialogue frameworks and proto-
cols have been developed and the theoretical reachability of ideal and intuitive outcomes
has often been proved formally. However, not all properties can be studied formally
[14]. Therefore a recent trend is to study the benefits of argumentation through experi-
mentation.

At least three works have explored the practical benefits of argumentation in di-
alogues. In both Karunatillake et al. [7] and Paquier et al. [10] argumentation-based

negotiation is studied. While the topics of their systems is different, that is, social agent
societies and exploring the negotiation space, their argumentative parts are modelled
alike. Within a dialogue agents may ask for and supply a motivation (reason) for pro-
posals. However, the language does not allow agents to build structured arguments,
which severely limits their expressivity in the dialogue.

Black and Bentley [4] experimentally evaluate the use of argumentation in two-
party deliberation dialogues. Agents are initialized with a set of value-based arguments
which are used in the dialogue to decide on some action. The argumentative strategy
is shown to outperform a simple consensus-forming strategy in randomly generated
dialogues with a wide variety in the number of arguments, values and actions. On the
other hand, the arguments have very little structure, as there is merely a single inference
step, that is, the application of the practical syllogism.

While this initial empirical research in argumentation-enabled dialogue systems has
already provided interesting results, little experimental research has yet been done on
dialogues in which agents exchange arguments with a more detailed internal structure.
Where formal frameworks model expressive goal-based agents that construct arguments
form their beliefs and goals, existing experimental work is limited to asking for motiva-
tion or providing arguments with very limited structure. This paper shows how, on the
basis of the ASPIC framework for structured argumentation [13], deliberation scenarios
can be generated, how strategies can use structured arguments to rationalize decision
making and how the efficiency and effectiveness of dialogues can be measured. It is
shown that an arguing strategy, even with self-interested agents, increases the shared
utility over a non-arguing strategy.

2 Deliberation model

The agent dialogue type in which the use of argumentation will be tested is the delib-
eration dialogue. In deliberation, agents aim to reach agreement on a course of action
to solve a problem. This type of dialogue is of particular interest because of the mix of
competitive and cooperative elements. Foremost the agents are assumed to engaged in
the dialogue because they share a mutual goal (to solve a given problem), which will
need to be achieved by selecting some action, called an option. An example is what
product a business should develop to increase profits. Various options are proposed
and motivated with arguments for the mutual goal, which then can be attacked with
counter-arguments. Every agent has a certain role in the dialogue, such as an engineer
or salesman, which gives rise to most of the agent’s goals and belief on the delibera-
tion problem at hand. Originating in this knowledge, together with personal goals and
beliefs, an agent acts in the dialogue in a self-interested way, i.e. it tries to influence
the dialogue outcome to maximize its personal utility. These characteristics form the
foundation for the deliberation model of this paper.

It is good to note that the deliberation as modelled in this paper does not address
any planning towards the execution of agreed upon actions. It covers only the mutual
process on deciding on a course of action. Although agents can discuss whether they
believe a plan to be realisable, the actual planning should be handled in a subsequent
(dialogue) phase.

2.1 Argumentation logic

Arguments are formed using an argumentation logic. We use a simple instantiation of
the abstract ASPIC framework for argumentation with structured arguments [13], which
is an instance of the Dung [5] abstract argumentation model. (For reasons of space
we refer the reader to [13] for the full details.) It allows agents to create structured
arguments from a knowledge base, modelled as inference trees of applied strict and
defeasible rules. An argument can be attacked by rebutting a conclusion of a defeasible
inference, by undermining one of its premises or by undercutting one of its defeasible
inferences. From the resulting attack relation and a preference relation a defeat relation
is defined. This relation then induces an abstract argumentation framework in the sense
of [5], which can thus be used to evaluate the acceptability status of arguments.

In this paper a simple instantiation of the framework is assumed, with a simple
logical language consisting of propositional literals, only defeasible rules and no pref-
erence ordering on arguments (such an instantiation is called an ASPIC argumentation
system). Rules are written as p⇒% q, where the rule name % is omitted for clarity when
appropriate and where the premise p and conclusion q are literals in the topic language.
Arguments are written as A |∼ p where A is the set of used premises and inferences
and p is the conclusion. The software experiment in this paper uses the ASPIC Java
Components implementation [15] of the framework.

2.2 Dialogue model

The dialogue model used is a slightly simplified version of the framework for delib-
eration dialogues of Kok et al. [8], based on the work of Prakken. [11] The relevant
details of the framework are now given. It models a dialogue between agents discussing
a deliberation problem at hand using a topic language with options, goals and beliefs.

Definition 1. A dialogue system consists of a set agents A discussing in a topic lan-
guage Lt, which is a logical language closed under classical negation, containing dis-
joint sets of formulas for options Lo ⊆ Lt, beliefs Lb ⊆ Lt and goals Lg ⊆ Lt, trying to
reach a decision on a course of action, which is an option o ∈ Lo, given the mutual goal
gd ∈ Lg.

Dialogues are modelled as a series of moves, each consisting of a locution from
the communication language as listed in Table 1, and some content in the form of a
proposition or argument.

Definition 2. A dialogue d is a sequence of moves, where each move m ∈ d is denoted
by id(m), the move identifier, player(m), the agent that played the move, content(m),
the content of the move and target(m), the move target. The set of all dialogues is
denoted D.

Consider two agents, a and b, who need to decide on where to go for dinner, while
respecting their mutual goal gd to enjoy the food. The moves of their dialogue are
presented in Table 2

Every move, except propose and skip, explicitly replies to one previous move, so
several disjoint proposal trees are formed, where the links between the nodes are reply
relations between moves.

Table 1. The available speech acts in the communication language

speech act attacking reply
propose(o) why-propose(o)

reject(o)
why-propose(o) argue(A |∼ p) where o ∈ A
argue(A |∼ p) argue(B |∼ p′) where

B |∼ p′ defeats A |∼ p
why(p′) where p′ ∈ A and p < Lo

why(p) argue(A |∼ p)
reject
skip

Table 2. An example dialogue showing the mapping of natural language to speech acts

agent statement logical form
a I suggest we go to the pizzeria. propose(o)
b Why should we go there? why-propose(o)
a If we would go to the pizzeria, we could

drink wine and that means we will en-
joy our food.

argue(o, o⇒%1 p1, p1 ⇒%2 gd |∼ gd)

b The pizzeria does serve tasty pizza’s
and having those means we will enjoy
the food.

argue(o, o⇒%3 p2, p2 ⇒%4 gd |∼ gd)

b We can not drink wine, though. argue(¬p1 |∼ ¬p1)
b And drinking wine does not mean we

will enjoy the food.
argue(¬%2 |∼ ¬%2)

a skip
b skip
a skip

Definition 3. For each proposal move mi in dialogue d a proposal tree P is defined as
follows:

1. The root of P is mi.
2. For each move m j that is a node in P, its children are all moves mk in d such that
target(mk) = m j.

This is a tree since every move in d has at most a single target.

Figure 1 shows the proposal tree of the example agents discussing where to go
for dinner. The explicit reply structure is used to assign a dialogical status, in or out,
to every move in the dialogue. By making proposals and replying to these the agents
influence the status of the moves and ultimately of the dialogue outcome.

Definition 4. The move status of a move m in a proposal tree P is in in dialogue d iff m
has no attacking replies in d that are in; otherwise it is out.

1(a) : propose(o)

2(b) : why-propose(o)

3(a) : argue(o, o⇒%1 p1, p1 ⇒%2 gd |∼ gd)

4(b) : argue(o, o⇒%3 p2, p2 ⇒%4 gd |∼ gd)

5(b) : argue(¬p1 |∼ ¬p1) 6(b) : argue(¬%2 |∼ ¬%2)

Fig. 1. Proposal tree of the example dialogue of Table 2

The proposal move in the example tree of Figure 1 is in, since it has no attacker that
is in. The argue move argue(o, o ⇒%1 p1, p1 ⇒%2 gd |∼ gd) is out since that does have
an attacker that is in.

Which agent may make the next move in a dialogue is determined by the turn taking
rule. Agents take turns in sequence and end their turn explicitly with a skip move.

Definition 5. For a dialogue d = 〈m1, . . . ,mn〉 the turntaker T (d) = player(mn) un-
less content(mn) = skip in which case T (d) = ai where i = id(player(mn)) + 1 if
ai ∈ A or else i = 0.

In their choice of moves the agents are bound by the following protocol:

Definition 6. Protocol P restricts the legal moves on a dialogue d with mutual goal gd,
such that:

1. Agents can only reply to moves of others, i.e. for every attacking move m ∈ d it
holds that player(m) , player(target(m)).

2. Agents can only move when they have the turn, that is, if m is legal as a continuation
of d, then T (d) = player(mn).

3. A proposal must be unique in the dialogue, i.e. for every two proposal moves
mi,m j ∈ d if content(mi) = content(m j) then mi = m j.

4. Moves may not be repeated in a line of attack, i.e. the path from the attacked move
to the propose move in the tree.

5. Arguments supporting a proposal should show how the mutual goal is achieved, i.e.
every move m ∈ d where target(m) = why-propose(q) is of the form argue(A |∼
gd) where q ∈ A.

A dialogue terminates if all agents no longer make other moves than directly skip-
ping.

Definition 7. If in a dialogue d = 〈m0, . . . ,mn−|A|+1, . . . ,mn〉 every m ∈ 〈mn−|A|+1, . . . ,mn〉

content(m) = skip then P(d, gd) = ∅.

The rationale behind the termination rule is that each agent should have the op-
portunity to make new moves when it still wants to. However, to prevent agents from
endlessly skipping until some other agent makes a beneficial move or even a mistake,
the number of skip moves is limited.

Finally, the dialogue outcome is determined by some selection process. This process
may be a separate phase, like ordering proposals according to the preferences in the
underlying argumentation system [1] or voting. For the experiment in this paper we
have used a simple selection function that picks a random proposal, but only from those
proposals that are in.

Definition 8. The dialogue outcome is a selection function O : D×Lg −→ Lo matching
a dialogue d and mutual goal gd to a single option o ∈ Qd, given the proposals set
Qd = {q|propose(q) ∈ d}.

This paper uses a unique dialogue outcome O(d, gd) = od being an arbitrary od ∈

{q|q ∈ Qd and propose(q) ∈ d that is in }. In other words, it selects one of the proposed
options that do not have any arguments against it that are in.

A possible addition to the presented dialogue model for deliberation is to make the
reasoning over preferences between options explicit, for example by extending the used
ASPIC argumentation system and adding the appropriate locution to the communica-
tion language. Definitions for move status need to be updated and the outcome selection
process can take these preference-related moves into account. This is an interesting ex-
tension but the current model is sufficient for the goals of this study and is therefore left
as future work.

2.3 Scenario generation

In our experiment, agents engage in a dialogue according to a scenario, which repre-
sents the underlying deliberation problem. It describes the mutual goal and the beliefs,

goals and options known to the agents. Consequently, the structure of a scenario heav-
ily influences the dialogue and the outcome. It is therefore important that the scenarios
reflect a realistic situation, reflecting the characteristics of deliberation problems.

In the scenario generation process [9] variables are used that determine the sizes of
the various defined sets. These are used to moderate the structure of the final scenario,
for example the number of goals allocated to an agents. How the variables are set is
explained at the end of this section.

Roles Every participating agent has a certain role in the system (for example, an engi-
neer, a salesman or an account manager) which gives rise to most of the agent’s goals
and belief on the deliberation problem at hand. This describes the duties and desires of
an agent as being a part of its context.

Definition 9. A set of roles R is defined where, given set sizes nOr and nGr , every role
r ∈ R in a deliberation context with mutual goal gd is assigned:

– A set of options Or ⊆ Lo defined by Or = {o1, . . . , oi} such that |Or | = nOr

– A set of goals Gr ⊆ Lg defined by Gr = {g1, . . . , g j} such that |Gr | = nGr

Every agent a ∈ A is assigned a role r ∈ R. The set of all scenario options is defined

OK =
⋃
r∈R

Or.

The idea is that the role accounts for the basic set of options that the agent knows
about and the goals the agent has. The variables nOr and nGr are used to control the
number of options and goals associated with a role.

A running example is used to illustrate the scenario generation process. Three agents
will each be assigned one of the two roles in the system, which in turn both have two
options and two goals. This is visualized in Table 3.

Table 3. Example scenario with three agents

nA = 3 A = {a1, a2, a3}

nR = 2 R = {r1, r2}

nOr = 2 Or1 = {o1, o2} Or2 = {o2, o3}

nGr = 2 Gr1 = {g1, g2} Gr2 = {g3, g4}

nS = 10 S = {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10}

Rule chaining The next step in generating scenarios is to create a body of knowledge
for each role that gives rise to lines of reasoning between options and goals, as is typical
for deliberation problems. These are called rule chains and connect a role’s option to
one of the role’s goals. Rules in these chains are built from a limited set of atoms called
the chaining seed set.

Definition 10. A chaining seed set of atoms S ⊆ Lb is defined as S = {p1,pi} such
that |S | = nS

The variable nS (the running example uses nS = 10) is used to control the number
of atoms that are used to generate rules for a chain. A chain starts with a rule with
an option as premise and ends with a rule with a goal as conclusion. The conclusion
of all other rules is an atom from the chaining seed set and in turn is the premise for
the follow-up rule. Although chains of rules with only one positive premise may seem
restricted, it will already support a sufficiently complex scenario, as will be shown in
Section 3.

Definition 11. Given a goal g, an option o and a chain length l a rule chain is a set of
rules Cg,o such that

– if l = 1 then Cg,o = {o⇒ g}
– if l > 1 then Cg,o = {o ⇒ p1, . . . , pi ⇒ p j, . . . , pn ⇒ g} where n = l − 1 and
{p1, . . . , pn} ⊆ S

Intermediate atoms used to create rules are chosen arbitrarily from the chaining
seed set. Note that only one chain is possible with chain length 1, but multiple paths
with larger chain lengths, using different intermediate atoms. Also, the option o is the
only required premise to generate a full argument in L for the goal g and every pi is a
sub-conclusion in such an argument.

When generating a chain for the running example, we may for instance chain role
r1’s option o1 to this agent’s goal g2. With l = 3 and the seed set S from Table 3 a chain

Cg2,o1 = {o1 ⇒%1 p5, p5 ⇒%2 p2, p2 ⇒%3 g2}

is constructed. With this chain the agent (if indeed assigned these rules later in the
allocation process) can construct a single argument for g2. Other chains, with different
intermediate atoms, are of course possible.

Conflict generation Scenarios do not only contain reasons why an option will achieve
some goal. An important part of deliberation problems is that there are conflicts between
what is known and what the rule chains proclaim. Therefore, the next step is to extend
the scenario with conflicting knowledge. This is modelled using negated facts, which
are created based on a rule chain. A negated fact is generated for every way in which
a rule in some chain can be attacked in L, that is by undercutting, undermining or
rebutting. These negated facts represent the contrary views in the deliberation problem
about the truth status of relevant facts.

Definition 12. A rule chain Cg,o with length l linking some goal g and option o has a
set of possible conflicts C̄g,o, containing for every rule p⇒% q ∈ Cg,o:

– a fact ¬% (an undercutter)
– a fact ¬p (an underminer)
– a fact ¬q (a rebuttal)

A set of possible conflicts C̄g,o thus contains facts that can be used to generate
counter-arguments to arguments formed using Cg,o. Note that no rule weights are used
in both chains and conflict set. Therefore an attack between two arguments as formed
from these rules will always be result in defeat. Although this is a simplification of
the complex knowledge of real world deliberation problems, it nevertheless allows for
structured arguments and counter arguments and, as demonstrated later, can be suffi-
ciently complex to generate interesting dialogues.

Consider again the example chain Cg2,o1 = {o1 ⇒%1 p5, p5 ⇒%2 p2, p2 ⇒%3 g2} then
there is a set of possible conflicts

C̄g2,o1 = {¬%1,¬p5,¬%2,¬p2,¬%3}.

Finally, the beliefs of a role are defined by considering the role’s options and gener-
ating either a chain or set of conflicts for each of them.

Definition 13. To every pair of an option o ∈
⋃

r∈R Or and role r ∈ R, where o ∈ Or,
a unique set of role-option beliefs Bo

r = Cg,o ∪ Cgd, o is assigned by selecting a goal
g ∈ Gr.
To every pair of an option o ∈

⋃
r∈R Or and role r ∈ R, where o < Or, a unique set of

role-option beliefs Bo
r ⊆ C̄g,o is assigned by selecting a goal g ∈ Lg such that |Bo

r | = nBo
r̄
.

Table 4. Belief assignment for the example roles

l = 3 (chains with length 3)
nBo

r̄
= 2 (full chain or 2 negated beliefs)

r1

Bo1
r1 o1 ⇒%1 p5, p5 ⇒%2 p2, p2 ⇒%3 g2,

o1 ⇒%4 p6, p6 ⇒%5 p4, p4 ⇒%6 gd

Bo2
r1 o2 ⇒%7 p5, p5 ⇒%2 p2, p2 ⇒%8 g1,

o2 ⇒%9 p9, p9 ⇒%10 p1, p1 ⇒%11 gd

Bo3
r1 ¬%17,¬p3

r2

Bo1
r2 ¬p2,¬%3

Bo2
r2 o2 ⇒%9 p9, p9 ⇒%12 p8, p8 ⇒%13 g4,

o2 ⇒%14 p1, p1 ⇒%15 p9, p9 ⇒%16 gd

Bo3
r2 o3 ⇒%17 p7, p7 ⇒%18 p3, p3 ⇒%19 g4,

o3 ⇒%17 p7, p7 ⇒%21 p8, p8 ⇒%22 gd

Hence, in case a certain option was in the role’s option set, it is assigned a chain to
the mutual goal as well as a rule chain to one of its personal goals Gr. For the purpose
of this paper an arbitrary goal g is selected from Gr. In case a certain option was not in
the role’s option set it is not given a rule chain but is instead assigned a set of possible
conflicts. For this paper, this is the conflict set of a chain as created for some other agent
that did have the option. In other words, it assigns (a subset of) the negated facts that

are associated with a chain of another agent. This ensures that possible conflicts relate
directly to the rules as generated in the other agents’ chains, which makes it possible to
construct counter arguments later in the dialogue.

The variable nBo
r̄

can be used to control the number of generated negated beliefs.
Table 4 shows all the role-option beliefs for the roles in the running example, as selected
from generated rule chains.

Agent knowledge allocation In this paper each agent is assumed to have its own set of
ASPIC inference rules; for notational convenience these are below regarded as part of
the agents’ beliefs. Agents inherit options, goals and beliefs from their respective roles.
In addition, as is typical for deliberation problems, agents also have beliefs and personal
goals not affiliated with their role. Additionally, agents may miss some part of the full
body of knowledge as coming from their roles.

Assignment of agent knowledge starts by taking the options and goals from the
agent’s role, plus a set of additional personal goals. The variable nGr̄

a
will be used to set

the number of non-role goals allocated to an agent.

Definition 14. An agent a ∈ A with role r and a set size nGr̄ has:

– A set of options Oa = Or

– A set of non-role originating goals Gr̄
a, where for every g ∈ Gr̄

a it holds that g ∈
Lg \Gr and such that |Gr̄

a| = nGr̄
a

– The combined set of goals Ga = Gr ∪Gr̄
a

The beliefs of an agent are both role-originating and non-role originating. The role-
originating beliefs set is a subset of all role-option beliefs as generated for each of the
options in the scenario, where variable nBr

a controls the size of the part that is allocated.

Definition 15. An agent a ∈ A with some role r is assigned a set of nBr
a role-originating

beliefs
Br

a ⊆
⋃

o∈OK

Bo
r such that |Br

a| = nBr
a

Since no agent is assigned full knowledge, an agent is likely to miss some rule
needed to construct a full argument. This is a characteristic of deliberation problems.
On the other hand, the missing knowledge will be partially undone by assigning addi-
tional, personal knowledge to the agent, the non-role originating beliefs. These beliefs
can come from various sources, such as an agent’s expertise or prior encounters. It is
modelled here as a set of rules taken from newly generated chains for some of the
agent’s options and goals, in the same way as how chains are generated for roles. The
variable nBr̄

a
is used to set the number of non-role originating beliefs known to the agent.

Definition 16. An agent a ∈ A is, given set size nBr̄
a
, assigned a unique set non-role

originating beliefs

Br̄
a ⊆
⋃
o∈Oa

Cg,o for some selected goal g ∈ Ga such that |Br
a| = nBr̄

a

Which goal is selected is determined by some selection function, but for this paper
an arbitrary goal is used form the set Ga.

The total set of beliefs is the union of role and non-role originating beliefs.

Definition 17. An agent a ∈ A is assigned a set of beliefs Ba = Br
a ∪ Br̄

a

Table 5. Knowledge allocation for example agents

(Agents a1 and a2 have role r1; agent a3 has role r2)
nGr̄

a
= 1 (Agents inherit goals, gd and get one non-role goal)

Oa1 o1, o2 Ga1 gd, g1, g2, g4

Oa2 o1, o2 Ga2 gd, g1, g2, g3

Oa3 o2, o3 Ga3 gd, g3, g4, g2

nBr
a = 13 (Agents inherit 13 of their 14 role beliefs)

nBr̄
a

= 2 (And get 2 non-role beliefs)
Ba1 o1 ⇒%1 p5, p5 ⇒%2 p2, p2 ⇒%3 g2,

o1 ⇒%4 p6, p4 ⇒%6 gd,
o2 ⇒%7 p5, p5 ⇒%2 p2, p2 ⇒%8 g1,
o2 ⇒%9 p9, p9 ⇒%10 p1, p1 ⇒%11 gd,
¬%17,¬p3,
o1 ⇒%23 p2, p3 ⇒%19 g4

Ba2 p5 ⇒%2 p2, p2 ⇒%3 g2,
o1 ⇒%4 p6, p6 ⇒%5 p4, p4 ⇒%6 gd,
o2 ⇒%7 p5, p5 ⇒%2 p2, p2 ⇒%8 g1,
o2 ⇒%9 p9, p9 ⇒%10 p1, p1 ⇒%11 gd,
¬%17,¬p7,
o2 ⇒%25 p2, o1 ⇒%25 p5

Ba3 ¬%4,
o2 ⇒%9 p9, p9 ⇒%12 p8, p8 ⇒%13 g4,
o2 ⇒%14 p1, p1 ⇒%15 p9, p9 ⇒%16 gd,
o3 ⇒%17 p7, p7 ⇒%18 p3, p3 ⇒%19 g4,
o3 ⇒%17 p7, p7 ⇒%21 p8, p8 ⇒%22 gd,
p8 ⇒%26 p7, p2 ⇒%3 g2

Table 5 shows the final knowledge bases of the three agent in the running example.
Note that the rules of several chains have been allocated fully to the agents, which now
allows them to construct arguments with them. On the other hand, some rules that were
part of a chain have not been assigned (see for example the second line in agent a1’s
beliefs) while additional rules are added that do not originate in the role of the agent but
which is personal knowledge (shown on the last line of every agent’s beliefs).

Throughout the generation process a number of variables, listed in Table 6, are
used to control the size of the different sets. Since the generation process is used to
create scenarios reflecting typical deliberation problems, the variable settings should be
chosen in such a way that the scenarios motivate agents to propose options, provide

Table 6. Input parameters used in the scenario generation process

experiment setting
nA The number of agents 4
nR The number of roles 5
nOr A role r’s options set size 4
nGr A role r’s goals set size 5
nS The chaining seedset size 20
l The length of rule chains 3
nBo

r̄
An agent a’s negated role-option beliefs set size 4

nGr̄
a

An agent a’s non-role originating goals set size 0
nBr

a An agent a’s role-originating beliefs set size 25
nBr̄

a
An agent a’s non-role originating beliefs set size 6

motivations and attack using counter-arguments. In [9] we used a software experiment
to establish suitable settings by repeatedly generating scenarios and in turn measuring
how many arguments and counter-arguments an agent can potentially create. Using
multiple linear modelling a model was be created from which the ideal variable settings
can be inferred. For the experiment of this paper such a model was created and the
variables were set to maximize the potential arguments between agents. Table 6 list
the parameter settings used in the experiment. Note that these differ slightly from [9]
because of a corrected scenario generation model.

2.4 Comparing strategies

The final thing to specify is the dialogue strategy used by an agent, that is, how an
agent selects from the moves allowed for by the protocol. The possibilities for strategies
are almost endless and form a fascinating topic by itself, but for the purpose of this
paper we can do with two fairly basic ones: one that uses argumentation in the dialogue
to attack and defend claims and one that does not argue in the dialogue itself. What
they share is the internal reasoning method, where both use the argumentation logic to
evaluate options and claims. In order to determine which options are beneficial for it, an
agent uses the notion of a defensible option. This is an option for which, considering its
knowledge, the agent can construct a defensible argument. Defensible arguments ensure
a credulous reasoning process, since you accept a claim if you have no stronger counter
argument. Reasoning over action has in the literature been associated with credulous
reasoning, while epistemic reasoning with facts has been linked to sceptical reasoning
[12].

Definition 18. An agent a’s option o ∈ Oa is a B-g-defensible option from g if, on the
basis of the beliefs Ba∪{o}, an argument A |∼ g can be constructed for some goal g ∈ Ga

such that o ∈ A.

Consider the agent a1 from the example scenario introduced above. Option o2 is a
B-g-defensible option from g1 since it can construct a defensible argument o2, o2 ⇒%7
p5, p5 ⇒%2 p2, p2 ⇒%8 g1 |∼ g1 based on Ba ∪ {o2}.

During the dialogue the agents maintain a model of the dialogue and evaluate the
dialogical status of moves to determine the next move to play. From this it knows what
options have been proposed, which together with its own options forms the set of op-
tions that it will play moves about. The agent will propose, attack and defend options
depending on the extent to which they are beneficial for the agent. This is based in the
utility that an agent has for its goals.

Definition 19. Every goal g ∈ Ga for agent a is assigned a goal utility Ug
a ∈ {1, . . . , |Ga|}.

For the purpose of this paper the agent assigns an increasing utility for every of
its goals from a utility of 1 to the number of goals. Even this simple allocation causes
enough variation in the utility of the agent’s goals. This in turn is used to give a valua-
tion to a specific option by summing the utilities of those goals for which a defensible
argument could be constructed, i.e. those goals that make it a B-g-justified option.

Table 7. Goal utilities, arguments for B-g-justified options and heuristics for the example agents

a1

Ugd
a1 = 3 B ∪ {o1} |∼ g2 Ho1

a1 = build

Ug1
a1 = 2 B ∪ {o2} |∼ g1 Ho2

a1 = build

Ug2
a1 = 4 B ∪ {o2} |∼ gd Ho3

a1 = destroy

Ug4
a1 = 1

a2

Ugd
a2 = 2 B ∪ {o1} |∼ gd Ho1

a2 = build

Ug1
a2 = 1 B ∪ {o2} |∼ g1 Ho2

a2 = build

Ug2
a2 = 2 B ∪ {o2} |∼ g2 Ho3

a2 = destroy

Ug4
a2 = 3 B ∪ {o2} |∼ gd

a3

Ugd
a3 = 4 B ∪ {o2} |∼ g4 Ho1

a3 = destroy

Ug1
a3 = 1 B ∪ {o2} |∼ gg Ho2

a3 = build

Ug2
a3 = 3 B ∪ {o3} |∼ g4 Ho3

a3 = build

Ug4
a3 = 2 B ∪ {o3} |∼ gd

Definition 20. For every option o ∈ Oa∪Qd in dialogue d an agent a assigns an option
heuristic Ho

d,a = build iff

(
∑
g∈Ga

Ug
a if o is a B-g-defensible option) > 0;

otherwise Ho
d,a = destroy.

Table 7 shows the utilities assigned to each of the goals for an agent on the left. The
arguments making B-g-justified options are shown in the middle, from which the option
heuristic can be assigned.

The final step in the strategy is to select a move; one that is legal according to the
protocol P.

Definition 21. An agent a in dialogue d had a move generation function Ga : D× Lg ×

Pow(Lb)× Pow(Lg)× Pow(Lo)⇒ Lc mapping the current dialogue, the mutual goal gd

and the agent’s beliefs, goals and options to a new move m.

Arguing strategy The arguing agents of this paper use a simple but expressive strategy.
Options for which it has a build heuristic can be proposed in a straightforward man-
ner. Playing moves in existing proposal trees is done when it has a build or destroy
heuristic for the option proposed in that tree. First the set of active attackers is estab-
lished, which are the moves that, if attacked, will flip the status of the tree’s proposal
move from in to out or from out to in. The agent can then try to build a new reply to
one of the active attackers by finding (counter-)arguments to the used claims. Moves
with sceptically acceptable arguments to the attacked move’s claim or questioned claim
are called B-justified argue moves. Here, sceptical acceptance is used because the agent
reasons about beliefs instead of actions. The same approach is used by Amgoud and
Prade [1].

Definition 22. Agent a in dialogue d has a B-justified argue move argue(A |∼ p) for
option o ∈ Oa if, on the basis of beliefs Ba ∪ {o}, a justified argument A |∼ p can be
constructed.

Algorithm 1 defines the arguing agent’s move generation strategy Ga. Replying in
an existing proposal tree is mostly straightforward when the active attackers are known.
For every move the corresponding attacker from Table 1 can be used. In case of argue
moves the agent prefers to play a counter-argument instead of questioning with a why
move. Finally, although sometimes many different arguments can be played to attack
some claim the agent will pick the first B-justified argue move it can form without
considering whether other arguments might have been better. This is one of the many
possible future research paths in strategy design for argumentative agents. Figure 2
show the proposal tree for option o1 in our running example if the agents play the
arguing strategy.

1(a1) : propose(o1)

2(a3) : why-propose(o1)

3(a2) : argue(o1, o1 ⇒%4 p6, p6 ⇒%5 p4, p4 ⇒%6 gd |∼ gd)

4(a3) : argue(¬%4 |∼ ¬%4)

Fig. 2. Proposal tree of o1 in the running example

Algorithm 1 The arguing agent move selection algorithm
Input: dialogue d, agent a
1: for all o ∈ Oa ∪ Qd do
2: if o < Qd and Hq

d,a = build then
3: return propose(q)
4: else if o ∈ Qd and Hq

d,a = build or Hq
d,a = destroy then

5: {Loop through all moves that are ’actively attacking’ the proposal}
6: for all m ∈ getActiveAttackers(∅, propose(q),>, d) do
7: if m = propose(o), m is in and

why-propose(o) < d then
8: return why-propose(o)s
9: else if m = argue(A |∼ p),

B-justified argue move argue(B |∼ p′) < d and
B |∼ p′ defeats A |∼ p then

10: return argue(B |∼ p′)
11: else if m = why-propose(o) and

B-justified argue move argue(A |∼ gd) < d where o ∈ A then
12: return argue(A |∼ gd)
13: else if m = why(p) and

B-justified argue move argue(A |∼ p) < d then
14: return argue(A |∼ p)
15: end if
16: end for
17: end if
18: end for
19: return skip

Algorithm 2 The getActiveAttackers algorithm
Input: attackers set att, move m, if parent is attacker par, dialogue d
1: if m = propose(q) or m is an attacking move then
2: if m is in then
3: {Include moves that are in}
4: att = att ∪ {m}
5: for all m′ ∈ d where target(m′) = m do
6: getActiveAttackers(att,m′,>, d)
7: end for
8: end if
9: else if par then

10: {If this move’s target was in, also look though its attackers}
11: for all m′ ∈ d where target(m′) = m do
12: getActiveAttackers(att,m′,⊥, d)
13: end for
14: end if
15: return att

Non-arguing strategy To compare the arguing strategy to one where the agents cannot
argue in the dialogue, a simple strategy is introduced that can only propose and reject
options. It still evaluates options in the dialogues using utilities for its goals, but it
cannot question, attack and defend claims in the dialogue, effectively excluding the
argumentation part of the deliberation dialogue. Algorithm 3 defines the non-arguing
agent’s move generation strategy Ga.

Algorithm 3 The non-arguing agent move selection algorithm
Input: dialogue d, agent a
1: for all o ∈ Oa \ Qd do
2: if Hq

d,a = build then
3: return propose(q)
4: end if
5: end for
6: for all o ∈ Qd do
7: if Hq

d,a = destroy and why-propose(o) < d then
8: return why-propose(o)
9: end if

10: end for
11: return skip

3 Experimental evaluation

In the preceding sections a deliberation model was presented that allows agents to en-
gage in a deliberation dialogue as described by a generated scenario. To study the use of
argumentation in such dialogues, an arguing and a non-arguing agent strategy was pro-
posed. In the present section an experiment is described in which dialogues as generated
by agents according to a scenario were evaluated of efficiency and effectiveness.

Efficiency pertains to how quickly the agents in the dialogue discuss all options. As
in previous work [7] the metric used is to simply count the number of moves in the
dialogue.

Definition 23. The move efficiency of a dialogue d is measured by

fd = |d|

Effectiveness is measured by the shared utility of the dialogue outcome considering
all agents. As in [7, 10] the utility that every agent itself assigns to the dialogue outcome
is summed to form the utility.

Definition 24. The total utility of dialogue d is measured by

vd =
∑
a∈A

∑
g∈Ga

Ug
a if Od is a justified option for a

Efficiency experiment A software experiment was conducted in which repeatedly sce-
narios were generated and played by one of the two strategies. The efficiency and effec-
tiveness of every dialogue was then measured and the averages over all scenarios were
compared. Every experiment consisted of 1000 played scenarios.

The average efficiency, the number of dialogue moves, of the arguing and non-
arguing strategies is shown in Figure 3. Clearly the average number of moves when
arguing (fd ≈ 26) is much higher than when the agents do not argue (fd ≈ 14). This
is simply because all the non-arguing agents do is propose or reject options, while the
arguing agents actually discuss claims. While argumentation in theory may prevent
unnecessary moves, improving efficiency, this is clearly not true for this model of this
paper.

●

●
●

●

●

●

●

●
●

●

●
●

●●●●●●●●
●
●
●
●
●
●●
●
●●●●●●●●●

●

●
●
●●●●
●●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●

arguing non−arguing

10
20

30
40

50

f d

Fig. 3. Efficiency fd of the arguing and non-arguing strategies, with average _

Effectiveness experiment The benefit of argumentation should become apparent by
measuring the effectiveness of the dialogues with arguing agents against those with
non-argumentative agents. The effectiveness, the total utility the agents have for the di-
alogue outcome, is shown in Figure 4. Clearly, the average effectiveness is much higher
(fd ≈ 10) for the arguing strategy than for the non-arguing strategy (fd ≈ 5). With
the non-arguing agents proposals will only go out if a reject move is played, but there
is almost always some agent who does not agree with a proposal. In effect in a lot of
dialogue the agents will reject all proposals, leaving no dialogue outcome and hence a

utility of 0. Because the arguing agents can move arguments giving a motivation, they
can make such attacked proposal in and available to select as dialogue outcome.

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

arguing non−arguing

0
10

20
30

40
50

v d

Fig. 4. Effectiveness vd of the arguing and non-arguing strategies, with average _

Baseline effectiveness One might argue that non-arguing agents should just propose op-
tions and never reject any. With no rejections, all options are in and thereby preventing
that no options can be selected as dialogue outcome at all. To study this, a comparison
was made between the arguing agents and a baseline strategy in which a random option
is selected from all that are available instead of engaging in a discussion. The result, as
shown in Figure 5, shows that indeed this baseline strategy will return a similar (with
no statistical difference) average effectiveness. It seems than that arguing in deliberation
dialogues might not be beneficial after all, but there is still a difference in the way the
results came to be. The arguing strategy empowers rational and self-interested agents
and the dialogues these agents produce contain useful information like which propos-
als were clearly not the right choice and giving insight in what the right choice might
be. Further research is needed to investigate how this additional information can best
be utilized. One idea is to adjust the outcome selection process to take into account
all arguments; another is to introduce belief revision which allows agents to adopt new
knowledge during the game through argumentation. Interestingly, Karunatillake at al.
[7] have found similar results where arguing about actions may not provide the clear
benefits over unbounded obedience.

●●●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●
●

●

●

●●●●

●●

●

●

●

arguing baseline

0
5

10
15

20
25

30
35

v d

Fig. 5. Effectiveness vd of the arguing strategy versus a random option selection, with average _

4 Conclusions

Existing work on the experimental evaluation of argumentation in agent dialogues makes
use of very simple models of argumentation, in which arguments have no or little struc-
ture. This paper has advanced the state of the art by carrying out an experimental eval-
uation with arguments that have considerably more structure and that can be attacked
in three ways. Agents can reason using options, goals and utilities and can attack dia-
logue arguments. Our study partly confirms findings of earlier work [7, 10, 4] that the
use of argumentation in inter-agent dialogues may be beneficial to the agents. It was
shown that arguing agents achieve a higher average shared utility than non-arguing
ones. Further research is required to find whether a certain strategy can also outperform
the baseline strategy.

A second contribution of our paper is a methodology for carrying out evaluation
experiments using inter-agent dialogues with structured arguments. Since this kind of
research is still rare a new method needed to be developed, which is based on the gen-
eration process for realistic scenarios (presented in further detail in [9]) and a strategy
model for goal-directed agents, with the aim to support future experimental research.
This may include other metrics for deliberation such as the amount of options covered
and beliefs used or whether the outcome is Pareto optimal given the agents’ preferences.

While the argumentation and deliberation model used in this paper is considerably
more expressive than in previous evaluation experiments, it is still rather simple com-
pared to the most sophisticated formal dialogue models of argumentation in the lit-

erature. [11, 1] We want to pursue different lines of research into more sophisticated
models, such as the adoption in the topic language of argument schemes for practical
reasoning [3, 2], improving the strategy model [6], enable agents to revise beliefs and
adding an outcome selection process using preference-based argumentation.

Acknowledgments This research was supported by the Netherlands Organisation for
Scientific Research (NWO) under project number 612.066.823.

References
1. L. Amgoud and H. Prade. Using arguments for making and explaining decisions. Artificial

Intelligence, 173(3-4):413–436, 2009.
2. K. Atkinson, T. J. M. Bench-Capon, and P. McBurney. A dialogue game protocol for multi-

agent argument over proposals for action. Autonomous Agents and Multi-Agent Systems,
11(2):153–171, 2005.

3. K. Atkinson, T. J. M. Bench-Capon, and P. McBurney. Arguing about cases as practical
reasoning. In Proceedings of the 10th International Conference on Artificial Intelligence
and Law, pages 35–44, Bologna, Italy, 2005. ACM Press.

4. E. Black and K. Bentley. An empirical study of a deliberation dialogue system. In Proceed-
ings of the 1st International Workshop on the Theory and Applications of Formal Argumen-
tation, Barcelona, Spain, 2011.

5. P. M. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artificial Intelligence, 77(2):321–357,
1995.

6. A. Kakas, N. Maudet, and P. Moraitis. Layered strategies and protocols for argumentation-
based agent interaction. In Proceedings of the 1st International Workshop on Argumentation
in Multi-Agent Systems, pages 64–77, New York, USA, 2004.

7. N. C. Karunatillake, N. R. Jennings, I. Rahwan, and P. McBurney. Dialogue games that
agents play within a society. Artificial Intelligence, 173(9-10):935–981, 2009.

8. E. M. Kok, J.-J. C. Meyer, H. Prakken, and G. A. W. Vreeswijk. A Formal Argumentation
Framework for Deliberation Dialogues. In P. McBurney, S. Parsons, and I. Rahwan, editors,
Proceedings of the 7th International Workshop on Argumentation in Multi-Agent Systems,
Berlin, Germany, 2010. Springer-Verlag.

9. E. M. Kok, J.-J. C. Meyer, H. van Oostendorp, H. Prakken, and G. A. W. Vreeswijk. A
Methodology for the Generation of Multi-Agent Argumentation Dialogue Scenarios. In 9th
European Workshop on Multi-agent Systems, Maastricht, The Netherlands, 2011.

10. P. Pasquier, R. Hollands, I. Rahwan, F. Dignum, and L. Sonenberg. An empirical study of
interest-based negotiation. Autonomous Agents and Multi-Agent Systems, 22(2):249–288,
2010.

11. H. Prakken. Coherence and Flexibility in Dialogue Games for Argumentation. Journal of
Logic and Computation, 15(6):1009–1040, 2005.

12. H. Prakken. Combining sceptical epistemic reasoning with credulous practical reasoning.
In P. Dunne and T. Bench-Capon, editors, Proceedings of COMMA-06, pages 311–322. IOS
Press, 2006.

13. H. Prakken. An abstract framework for argumentation with structured arguments. Argument
and Computation, 1(2):93–124, 2010.

14. I. Rahwan. Guest editorial: Argumentation in multi-agent systems. Autonomous Agents and
Multi-Agent Systems, 11(2):115–125, 2005.

15. M. South and G. A. W. Vreeswijk. ASPIC Java Components. http://aspic.cossac.org/.

